

Improving Safeguards Approaches for the Future Aqueous Reprocessing

Naoko INOUE, Yusuke KUNO

Dept. of Nuclear Engineering & Management, School of Engineering, The University of Tokyo

Future Nuclear Energy World

- Nuclear power growth (number of reactors, advanced-reactors, fast reactors etc)
- Needs of nuclear fuel cycles (large scale fuel cycle, Pu recycle)
- Needs to develop safer, more economical systems
- Needs of proliferation-resistant nuclear systems against the increase in nuclear diversion risk

Proliferation Resistant NFC

- Impedes the diversion or undeclared production of nuclear material or misuse of technology by the Host State
- Demonstrate NFC for peaceful purpose
- Intrinsic Features;
 - No isolated Pu, Limited accessibility, etc
- Institutional (Extrinsic) Measures;
 - International Safeguards [Comprehensive Safeguards Agreement + Additional Protocol], Bilateral Agreements, Export Control, etc
- Complementary measures; as additional confidence building
 - <u>Transparency</u> (e.g. information sharing on nuclear activities with neighbor countries, public)

Proliferation Resistance Strategy

GEN IV PR&PP Experts Group

Develop and demonstrate a methodology for the systematic evaluation with respect to proliferation resistance (PR) and physical protection (PP)

➢Member: USA, CA, JPN, EC, FRA, UK, ROK, IAEA

Proliferation Resistance Measures

- Proliferation Technical Difficulty (TD)
- Proliferation Cost (PC)
- Proliferation Time (PT)
- Fissile Material Type (MT)
- Detection Probability (DP)
 - Detection Resource Efficiency (DE)

3

Advanced Aqueous Reprocessing for FR Cycle

Japan

<u>FaCT Project</u>: Fast reactor Cycle Technology Development

NEXT: New Extraction system for TRU recovery

US

<u>AFCI, GNEP</u>

UREX+: Uranium Extraction Process

France

GANEX: Grouped Actinides Extraction

Advanced Aqueous Reprocessing

Safeguards in Proliferation Resistance

An Approach to Robust Proliferation Resistant System

- Pursue technical solutions to meet the Safeguards requirements in light of timeliness, accuracy and efficiency as much as reasonably achievable.
- 2. Evaluate it from the perspective of Proliferation Resistance (PR).
- 3. Take additional PR measures if necessary.

Items to be considered to meet SG requirement (Technical solutions)

The below-shown ideas may be essential for future NFC's "**Safeguards by Design**";

- (1) Small process inventory,
- (2) Real time process monitoring with remote monitoring C/S, NDA etc for NRTA, for detection of process condition change etc
- (3) More accurate interim inventory verification in practically possible frequency (e.g. monthly)
- (4) Accountancy-friendly operational mode for NRTA (e.g. computerized)

Safeguards by Design (1) Small process inventory: Case Study on Reprocessing

Safeguards by Design

(1) Small process inventory: Case Study on Reprocessing

To Estimate Flow or_{MUF}

Assumption

Errors for volume measurement,

sampling, conc. Measurement : ITV

To Estimate Inventory o_{MUF}

Assumption

Error for volume measurement : 1%

Error for sampling : 0.5%

Error for conc. Measurement : 10%

Errors in Volume Measurement and DA analysis in Reprocessing (<u>ITV2000</u>)

	Input Pu		Output Pu	
	Random, Relative %	Systematic Relative %	Random, Relative %	Systematic Relative %
Volume	0.3	0.2	0.3	0.2
Sampling	0.3	0.2	0.2	nd
Pu-conc. (IDMS)	0.2	0.2	0.15	0.1

Results of Case Study A&B (1) Small process inventory: Case Study on Reprocessing

Safeguards by Design

(2) Installation of real time process monitoring for NRTA and for detection of process condition change (with remote monitoring) :

- C/S
- Common use of operator's process monitors/sensors (with authentication for independency)
- NDAs including neutron, gamma monitors
- Solution monitoring other new ideas e.g. electrochemical monitors + density measurement: U, Pu, H⁺ (*idea for* Image of U · Pu Image of U · Pu Real-Time Real-Time Monitor

Monitor composed of 3 Pt electrodes

Safeguards by Design

(3) More accurate interim inventory verification: idea for reprocessing case

- 1. Increase in number of vessels that are capable of measuring NM at accountancy level (input, output, major buffer vessels)
- 2. Transfer and centralize NM to the major vessels
- 3. Slight interruption for taking samples
- 4. Determine total amount of NM by IDMS (Isotopic Dilution Mass Spectrometry) without measuring solution volume

Improvement of oMUF with IDMS - Direct determination for Pu amount -

(without volume measurement)

	Flow		Total Inventory	Errors (Flow &
	Input	Output	(Process+Accountancy)	Inventory)
Case A	60kgPu x 200 batches (12,000 kgPu/year)	200 kgPu x 60 batches	400 kgPu	ITV2000
Case C		15 kgPu x 800 batches	170 kgPu	Volume:0% Sampling & Measurement: ITV 2000

Improvement of oMUF with IDMS

- Direct determination for Pu amount -

Image of accountancy performance

Control of NM with O'_{MUF} 1SQ-Pu may be realized by monthly IIV.

Transparency

Measures for confidence building;

- State-State, State-International Organization:
 - Safeguards; information sharing through IAEA
- State-State: information sharing through transparency-framework
- Non-government organizations:
 - through cooperative project
- System for information Sharing on e.g.
 Safeguards with citizens.

Conclusions

- Safeguards will play the essential role among measures for Proliferation Resistance.
- Future NFC requires Safeguards system with a timely, accurate and efficient manner (also economically efficient), which may only be realized by "Safeguards by Design".
- Additional PR measures can be taken if necessary.
- "Transparency" should be pursued for mutual confidence building for peaceful use of nuclear energy.

Thank you for your attention

